Cost functions play an important role in neural networks. They give neural networks an indication of 'how wrong' they are; a.k.a. how far they are from the desired outputs. Also in fitness functions, cost functions play an important role.
- Source:
- See:
Methods
(static) BINARY (targets, outputs) → {number} open an issue
Binary Error
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
misses The amount of times targets value was missed
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, {
log: 1,
iterations: 500,
error: 0.03,
rate: 0.05,
cost: methods.cost.BINARY
});
- Source:
- See:
(static) CROSS_ENTROPY (targets, outputs) → {number} open an issue
Cross entropy error
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, { cost: methods.cost.CROSS_ENTROPY });
- Source:
- See:
(static) HINGE (targets, outputs) → {number} open an issue
Hinge loss, for classifiers
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, {
log: 1,
iterations: 500,
error: 0.03,
rate: 0.05,
cost: methods.cost.HINGE
});
- Source:
(static) MAE (targets, outputs) → {number} open an issue
Mean Absolute Error
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, {
log: 1,
iterations: 500,
error: 0.03,
rate: 0.05,
cost: methods.cost.MAE
});
- Source:
(static) MAPE (targets, outputs) → {number} open an issue
Mean Absolute Percentage Error
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, {
log: 1,
iterations: 500,
error: 0.03,
rate: 0.05,
cost: methods.cost.MAPE
});
- Source:
(static) MSE (targets, outputs) → {number} open an issue
Mean Squared Error
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, { cost: methods.cost.MSE });
- Source:
(static) MSLE (targets, outputs) → {number} open an issue
Mean Squared Logarithmic Error
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, {
log: 1,
iterations: 500,
error: 0.03,
rate: 0.05,
cost: methods.cost.MSLE
});
- Source:
(static) WAPE (targets, outputs) → {number} open an issue
Weighted Absolute Percentage Error (WAPE)
Parameters:
Name | Type | Description |
---|---|---|
targets |
Array.<number> | number | Ideal value |
outputs |
Array.<number> | number | Actual values |
Returns:
Example
Copy
let { methods, Network } = require("@liquid-carrot/carrot");
let myNetwork = new Network(5, 10, 5);
myNetwork.train(trainingData, {
cost: methods.cost.WAPE
});
- Source: