architect

Preconfigured neural networks!

Ready to be built with simple one line functions.

No longer supported! Use Network.architecture.[architecture] instead

Source:

Methods

(static) Construct (list) → {Network} open an issue

Constructs a network from a given array of connected nodes

Parameters:
Name Type Description
list Array.<Group> | Array.<Layer> | Array.<Node>

A list of Groups, Layers, and Nodes to combine into a Network

Examples

A Network built with Nodes

      Copy
      let { architect } = require("@liquid-carrot/carrot");

var A = new Node();
var B = new Node();
var C = new Node();
var D = new Node();

// Create connections
A.connect(B);
A.connect(C);
B.connect(D);
C.connect(D);

// Construct a network
var network = architect.Construct([A, B, C, D]);
    

A Network built with Groups

      Copy
      let { architect } = require("@liquid-carrot/carrot");

var A = new Group(4);
var B = new Group(2);
var C = new Group(6);

// Create connections between the groups
A.connect(B);
A.connect(C);
B.connect(C);

// Construct a square-looking network
var network = architect.Construct([A, B, C, D]);
    
Source:

(static) GRU (input, …units, output) → {Network} open an issue

Creates a gated recurrent unit network

Parameters:
Name Type Description
input number

Number of input nodes

units number <repeatable>

Number of gated recurrent units per layer

output number

Number of output nodes

Examples

GRU is being tested, and may not always work for your dataset.

      Copy
      let { architect } = require("@liquid-carrot/carrot");

// Input, gated recurrent unit layer, output
let my_LSTM = new architect.GRU(2,6,1);

// with multiple layers of gated recurrent units
let my_LSTM = new architect.GRU(2, 4, 4, 4, 1);
    

Training XOR gate

      Copy
      let { architect } = require("@liquid-carrot/carrot");

var training_set = [
  { input: [0], output: [0]},
  { input: [1], output: [1]},
  { input: [1], output: [0]},
  { input: [0], output: [1]},
  { input: [0], output: [0]}
];

var network = new architect.GRU(1,1,1);

// Train a sequence: 00100100..
network.train(training_set, {
  log: 1,
  rate: 0.1, // lower rates work best
  error: 0.005,
  iterations: 3000,
  clear: true // set to true while training
});
    
Source:

(static) Hopfield (size) → {Network} open an issue

Creates a hopfield network of the given size

Parameters:
Name Type Description
size number

Number of inputs and outputs (which is the same number)

Example

Output will always be binary due to `Activation.STEP` function.

      Copy
      let { architect } = require("@liquid-carrot/carrot");

var network = architect.Hopfield(10);
var training_set = [
  { input: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1], output: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] },
  { input: [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], output: [1, 1, 1, 1, 1, 0, 0, 0, 0, 0] }
];

network.train(training_set);

network.activate([0,1,0,1,0,1,0,1,1,1]); // [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
network.activate([1,1,1,1,1,0,0,1,0,0]); // [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
    
Source:

(static) Liquid () open an issue

Source:
To Do:
  • Build Liquid network constructor

(static) LSTM (input, …memory, output, optionsopt) → {Network} open an issue

Creates a long short-term memory network

Parameters:
Name Type Description
input number

Number of input nodes

memory number <repeatable>

Number of memory block_size assemblies (input gate, memory cell, forget gate, and output gate) per layer

output number

Number of output nodes

options

Configuration options

Properties
Name Type Default Description
memory_to_memory boolean <optional> false

Form internal connections between memory blocks

output_to_memory boolean <optional> false

Form output to memory layer connections and gate them

output_to_gates boolean <optional> false

Form output to gate connections (connects to all gates)

input_to_output boolean <optional> true

Form direct input to output connections

input_to_deep boolean <optional> true

Form input to memory layer conections and gate them

Example

While training sequences or timeseries prediction, set the clear option to true in training

      Copy
      let { architect } = require("@liquid-carrot/carrot");

// Input, memory block_size layer, output
let my_LSTM = new architect.LSTM(2,6,1);

// with multiple memory block_size layer_sizes
let my_LSTM = new architect.LSTM(2, 4, 4, 4, 1);

// with options
var options = {
  memory_to_memory: false,    // default
  output_to_memory: false,    // default
  output_to_gates: false,     // default
  input_to_output: true,      // default
  input_to_deep: true         // default
};

let my_LSTM = new architect.LSTM(2, 4, 4, 4, 1, options);
    
Source:
See:

(static) NARX (input, hidden, output, input_memory, output_memory) → {Network} alpha

Creates a NARX network (remember previous inputs/outputs)

Parameters:
Name Type Description
input number

Number of input nodes

hidden Array.<number> | number

Array of hidden layer sizes, e.g. [10,20,10] If only one hidden layer, can be a number (of nodes)

output number

Number of output nodes

input_memory number

Number of previous inputs to remember

output_memory number

Number of previous outputs to remember

Example
      Copy
      let { architect } = require("@liquid-carrot/carrot");

let narx = new architect.NARX(1, 5, 1, 3, 3);

// Training a sequence
let training_data = [
  { input: [0], output: [0] },
  { input: [0], output: [0] },
  { input: [0], output: [1] },
  { input: [1], output: [0] },
  { input: [0], output: [0] },
  { input: [0], output: [0] },
  { input: [0], output: [1] },
];
narx.train(training_data, {
  log: 1,
  iterations: 3000,
  error: 0.03,
  rate: 0.05
});
    
Source:

(static) Perceptron (…layer_neurons) → {Network} open an issue

Creates a multilayer perceptron (MLP)

Parameters:
Name Type Description
layer_neurons number <repeatable>

Number of neurons in input layer, hidden layer(s), and output layer as a series of numbers (min 3 arguments)

Returns:

Feed forward neural network

Example
      Copy
      let { architect } = require("@liquid-carrot/carrot");

// Input 2 neurons, Hidden layer: 3 neurons, Output: 1 neuron
let my_perceptron = new architect.Perceptron(2,3,1);

// Input: 2 neurons, 4 Hidden layers: 10 neurons, Output: 1 neuron
let my_perceptron = new architect.Perceptron(2, 10, 10, 10, 10, 1);
    
Source:

(static) Random (input, hiddenopt, output, optionsopt) → {Network} open an issue

Creates a randomly connected network

Parameters:
Name Type Description
input number

Number of input nodes

hidden number <optional>

Number of nodes inbetween input and output

output number

Number of output nodes

options

Configuration options

Properties
Name Type Default Description
connections number <optional> hidden*2

Number of connections (Larger than hidden)

backconnections number <optional> 0

Number of recurrent connections

selfconnections number <optional> 0

Number of self connections

gates number <optional> 0

Number of gates

Example
      Copy
      let { architect } = require("@liquid-carrot/carrot");

let network = architect.Random(1, 20, 2, {
  connections: 40,
  gates: 4,
  selfconnections: 4
});
    
Source: